Date of Graduation


Document Type


Degree Type



Statler College of Engineering and Mineral Resources


Lane Department of Computer Science and Electrical Engineering

Committee Chair

Matthew C. Valenti.


In a seminal paper published in 2001, Caire and Tuninetti derived an information theoretic bound on the throughput of hybrid-ARQ in the presence of block fading. However, the results placed no constraints on the modulation used, and therefore the input to the channel was Gaussian. The purpose of this thesis is to investigate the impact of modulation constraints on the throughput of hybrid-ARQ in a block fading environment. First, we consider the impact of modulation constraints on information outage probability for a block fading channel with a fixed length codeword. Then, we consider the effect of modulation constraints upon the throughput of hybrid-ARQ, where the rate of the codeword varies depending on the instantaneous channel conditions. These theoretical bounds are compared against the simulated performance of HSDPA, a newly standardized hybrid-ARQ protocol that uses QPSK and 16-QAM bit interleaved turbo-coded modulation. The results indicate how much of the difference between HSDPA and the previous unconstrained modulation bound is due to the use of the turbo-code and how much is due to the modulation constraints. (Abstract shortened by UMI.).