Date of Graduation


Document Type


Degree Type



Statler College of Engineering and Mineral Resources


Lane Department of Computer Science and Electrical Engineering

Committee Chair

Daryl .S. Reynolds

Committee Co-Chair

Brian .D. Woerner


Multipath fading is one of the primary factors for degrading the performance in a wireless network. Information theoretic and past research suggest the use various diversity techniques to combat fading in wireless networks. Antenna diversity, a form of diversity technique, when incorporated in a wireless transceiver increases the system capacity and is one of the effective methods to combat fading in wireless systems. Also, recent research by Laneman, Sendonaris suggests that cooperation among users in a wireless networks is an effective approach for a better signal reception in multipath fading environments. The diversity gains obtained by cooperation among the users of a wireless network is termed as cooperative diversity . Although, prior research in cooperative diversity considers users equipped with single antenna, in practical scenarios users may be able to accommodate multiple antennas due to the recent advanced research in semiconductor industry. Hence, the primary purpose of this thesis is to design, simulate and analyze an end-end performance of multi-antenna wireless systems employing cooperative multi antenna relay nodes so as to exploit the cooperative diversity and antenna diversity simultaneously in a wireless networks. Three main contributions to the area of cooperative multiple-input multiple-output (MIMO) wireless systems is presented in this thesis. First, we perform information theoretic analysis to study the impact of antenna arrays on cooperative wireless networks and propose the best possible distribution of antenna arrays among the three terminals of a simple three terminal cooperative relay network. Second, we design, simulate, and analyze a cooperative multiple-input multiple-output (MIMO) wireless systems employing orthogonal space-time block codes as proposed by Alamouti in 1998 with a decode-and-forward (DF) relay terminal. We implement a maximal ratio combining receiver that provides almost twice the diversity gain with respect to point-point multiple input multiple output link. Finally, we implement a practical receiver for cooperative reception using multiple antennas at all nodes based on Bell-Labs Layered Space Time architecture (BLAST). We incorporate a practical adaptive decode-and-forward (DF) relaying technique for reliable signal retransmission for both Alamouti space-time coding and the BLAST schemes. Results presented in terms of bit error rates and throughput show that remarkable performance gains are achievable by combining the concepts drawn from space-time coding, cooperative relaying and array processing.