Semester

Spring

Date of Graduation

2005

Document Type

Dissertation

Degree Type

PhD

College

Statler College of Engineering and Mineral Resources

Department

Lane Department of Computer Science and Electrical Engineering

Committee Chair

Ali Feliachi.

Abstract

This dissertation presents operation and control strategies for electric power distribution systems containing distributed generators. First, models of microturbines and fuel cells are developed. These dynamic models are incorporated in a power system analysis package. Second, operation of these generators in a distribution system is addressed and load following schemes are designed. The penetration of distributed generators (DGs) into the power distribution system stability becomes an issue and so the control of those DGs becomes necessary. A decentralized control structure based on conventional controllers is designed for distributed generators using a new developed optimization technique called Guided Particle Swarm Optimization. However, the limitations of the conventional controllers do not satisfy the stability requirement of a power distribution system that has a high DG penetration level, which imposes the necessity of developing a new control structure able to overcome the limitations imposed by the fixed structure conventional controllers and limit the penetration of DGs in the overall transient stability of the distribution system. Third, a novel multi-agent based control architecture is proposed for transient stability enhancement for distribution systems with microturbines. The proposed control architecture is hierarchical with one supervisory global control agent and a distributed number of local control agents in the lower layer. Specifically, a central control center supervises and optimizes the overall process, while each microturbine is equipped with its own local control agent.;The control of naval shipboard electric power system is another application of distributed control with multi-agent based structure. In this proposal, the focus is to introduce the concept of multi-agent based control architecture to improve the stability of the shipboard power system during faulty conditions. The effectiveness of the proposed methods is illustrated using a 37-bus IEEE benchmark system and an all-electric naval ship.

Share

COinS