Date of Graduation


Document Type


Degree Type



Statler College of Engineering and Mineral Resources


Lane Department of Computer Science and Electrical Engineering

Committee Chair

Arun A Ross


The human iris is traditionally imaged in Near Infrared (NIR) wavelengths (700nm-900nm) for iris recognition. The absorption co-efficient of color inducing pigment in iris, called Melanin, decreases after 700nm thus minimizing its effect when iris is imaged at wavelengths greater than 700nm. This thesis provides an overview and explores the efficacy of iris recognition at different wavelength bands ranging from visible spectrum (450nm-700nm) to NIR (700nm-900nm) and Short Wave Infrared (900nm-1600nm). Different matching methods are investigated at different wavelength bands to facilitate cross-spectral iris recognition.;The iris recognition analysis in visible wavelengths provides a baseline performance when iris is captured using common digital cameras. A novel blob-based matching algorithm is proposed to match RGB (visible spectrum) iris images. This technique generates a match score based on the similarity between blob like structures in the iris images. The matching performance of the blob based matching method is compared against that of classical 'Iris Code' matching method, SIFT-based matching method and simple correlation matching, and results indicate that the blob-based matching method performs reasonably well. Additional experiments on the datasets show that the iris images can be matched with higher confidence for light colored irides than dark colored irides in the visible spectrum.;As part of the analysis in the NIR spectrum, iris images captured in visible spectrum are matched against those captured in the NIR spectrum. Experimental results on the WVU multispectral dataset show promise in achieving a good recognition performance when the images are captured using the same sensor under the same illumination conditions and at the same resolution. A new proprietary 'FaceIris' dataset is used to investigate the ability to match iris images from a high resolution face image in visible spectrum against an iris image acquired in NIR spectrum. Matching in 'FaceIris' dataset presents a scenario where the two images to be matched are obtained by different sensors at different wavelengths, at different ambient illumination and at different resolution. Cross-spectral matching on the 'FaceIris' dataset presented a challenge to achieve good performance. Also, the effect of the choice of the radial and angular parameters of the normalized iris image on matching performance is presented. The experiments on WVU multispectral dataset resulted in good separation between genuine and impostor score distributions for cross-spectral matching which indicates that iris images in obtained in visible spectrum can be successfully matched against NIR iris images using 'IrisCode' method.;Iris is also analyzed in the Short Wave Infrared (SWIR) spectrum to study the feasibility of performing iris recognition at these wavelengths. An image acquisition setup was designed to capture the iris at 100nm interval spectral bands ranging from 950nm to 1650nm. Iris images are analyzed at these wavelengths and various observations regarding the brightness, contrast and textural content are discussed. Cross-spectral and intra-spectral matching was carried out on the samples collected from 25 subjects. Experimental results on this small dataset show the possibility of performing iris recognition in 950nm-1350nm wavelength range. Fusion of match scores from intra-spectral matching at different wavelength bands is shown to improve matching performance in the SWIR domain.