Date of Graduation


Document Type


Degree Type



Statler College of Engineering and Mineral Resources


Chemical and Biomedical Engineering

Committee Chair

Rakesh K Gupta

Committee Co-Chair

Sushant Agarwal

Committee Member

Pradeep P Fulay

Committee Member

Robin S Hissam

Committee Member

Pierre Moulinie

Committee Member

Xueyan Song

Committee Member

Charter D Stinespring


Polymer blending facilitates the combination of the attractive attributes of two or more polymers while compensating for the unfavorable ones. Most polymers are thermodynamically incompatible with one another, and their blending yields a two-phase microstructure. This morphology generally determines the mechanical and rheological properties of the blend system which then determine its applications. Morphology development typically involves deformation of the dispersed phase followed by drop breakup. However, drop coalescence competes with this process, and ultimately a balance must be reached between these two competing processes. Extensional flow fields are known to promote drop breakup and are especially important for blends with high viscosity ratios, that is for blends where the viscosity of the dispersed phase is at least about 3.8 times greater than that of the matrix phase. Coalescence may be attenuated by compatibilizers that modify the interface between the polymer phases. Nanoparticles with tuned surface chemistry may also be used as compatibilizers. A combination of extensional flow and nanoparticle stabilization should, therefore, result in a fine, stable morphology.;To begin the investigation toward the effects of extensional flow blending with and without the incorporation of nanoparticles, preliminary results were obtained using two different polymer blend systems: polycarbonate (PC)/styrene acrylonitrile (SAN) and polystyrene (PS)/linear low-density polyethylene (LLDPE). However, the majority of the presented results involve blends of high-density polyethylene (HDPE) dispersed in PS. With this blend system, with the material grades selected, the viscosity ratio exceeded 3.8 over the entire domain of deformation rates anticipated in the processing used. Coarse blends of various compositions were formulated using shear flow in an internal mixer or in a twin-screw extruder. These blends were subjected to extensional flow in converging dies of different geometries and where more than one stretching episode was possible; the temperature, total strain, and flow rate were varied, among other factors, in a systematic manner. Experiments were repeated in the presence of various grades of fumed nanosilica of different sizes and surface treatments, which imparted different surface tension and relative surface polarity (hydrophilic versus hydrophobic) for the nanoparticles. The mixing sequence was varied including premixing the nanosilica into the thermodynamically non-preferred polymer phase.;Scanning electron microscopy (SEM) was used to determine the size and size distribution of the dispersed polymer phase. The material was typically sectioned in the flow direction, but sectioning in the direction perpendicular to flow and etching, or selectively dissolving, one phase or the other was also investigated. The primary effect of extensional flow blending was to reduce the volume-average diameter of the dispersed polymer phase, especially with increasing strains and flow rates, or strain rates, which is directly dependent on both. Finding suitable conditions for the nanoparticles to selectively localize at the HDPE/PS interface was challenging, but relatively small amounts of nanoparticles dispersed in the PS matrix decreased the volume-average diameter of HDPE drops. When the nanosilica was preloaded into the HDPE dispersed phase, very coarse initial blends were produced which then exhibited dramatic decreases in phase size with extensional flow. These and other results are properly organized and presented.