Murong Xu

Date of Graduation


Document Type


Degree Type



Eberly College of Arts and Sciences



Committee Chair

Hong-Jian Lai

Committee Co-Chair

John Goldwasser

Committee Member

Guodong Guo

Committee Member

Rong Luo

Committee Member

Jerzy Wojciechowski


This dissertation focuses on coloring problems in graphs and connectivity problems in digraphs. We obtain the following advances in both directions.;1. Results in graph coloring. For integers k,r > 0, a (k,r)-coloring of a graph G is a proper coloring on the vertices of G with k colors such that every vertex v of degree d( v) is adjacent to vertices with at least min{lcub}d( v),r{rcub} different colors. The r-hued chromatic number, denoted by chir(G ), is the smallest integer k for which a graph G has a (k,r)-coloring.;For a k-list assignment L to vertices of a graph G, a linear (L,r)-coloring of a graph G is a coloring c of the vertices of G such that for every vertex v of degree d(v), c(v)∈ L(v), the number of colors used by the neighbors of v is at least min{lcub}dG(v), r{rcub}, and such that for any two distinct colors i and j, every component of G[c --1({lcub}i,j{rcub})] must be a path. The linear list r-hued chromatic number of a graph G, denoted chiℓ L,r(G), is the smallest integer k such that for every k-list L, G has a linear (L,r)-coloring. Let Mad( G) denotes the maximum subgraph average degree of a graph G. We prove the following. (i) If G is a K3,3-minor free graph, then chi2(G) ≤ 5 and chi3(G) ≤ 10. Moreover, the bound of chi2( G) ≤ 5 is best possible. (ii) If G is a P4-free graph, then chir(G) ≤q chi( G) + 2(r -- 1), and this bound is best possible. (iii) If G is a P5-free bipartite graph, then chir( G) ≤ rchi(G), and this bound is best possible. (iv) If G is a P5-free graph, then chi2(G) ≤ 2chi(G), and this bound is best possible. (v) If G is a graph with maximum degree Delta, then each of the following holds. (i) If Delta ≥ 9 and Mad(G) < 7/3, then chiℓL,r( G) ≤ max{lcub}lceil Delta/2 rceil + 1, r + 1{rcub}. (ii) If Delta ≥ 7 and Mad(G)< 12/5, then chiℓ L,r(G)≤ max{lcub}lceil Delta/2 rceil + 2, r + 2{rcub}. (iii) If Delta ≥ 7 and Mad(G) < 5/2, then chi ℓL,r(G)≤ max{lcub}lcei Delta/2 rceil + 3, r + 3{rcub}. (vi) If G is a K 4-minor free graph, then chiℓL,r( G) ≤ max{lcub}r,lceilDelta/2\rceil{rcub} + lceilDelta/2rceil + 2. (vii) Every planar graph G with maximum degree Delta has chiℓL,r(G) ≤ Delta + 7.;2. Results in digraph connectivity. For a graph G, let kappa( G), kappa'(G), delta(G) and tau( G) denote the connectivity, the edge-connectivity, the minimum degree and the number of edge-disjoint spanning trees of G, respectively. Let f(G) denote kappa(G), kappa'( G), or Delta(G), and define f¯( G) = max{lcub}f(H): H is a subgraph of G{rcub}. An edge cut X of a graph G is restricted if X does not contain all edges incident with a vertex in G. The restricted edge-connectivity of G, denoted by lambda2(G), is the minimum size of a restricted edge-cut of G. We define lambda 2(G) = max{lcub}lambda2(H): H ⊂ G{rcub}.;For a digraph D, let kappa;(D), lambda( D), delta--(D), and delta +(D) denote the strong connectivity, arc-strong connectivity, minimum in-degree, and out-degree of D, respectively. For each f ∈ {lcub}kappa,lambda, delta--, +{rcub}, define f¯(D) = max{lcub} f(H): H is a subdigraph of D{rcub}.;Catlin et al. in [Discrete Math., 309 (2009), 1033-1040] proved a characterization of kappa'(G) in terms of tau(G). We proved a digraph version of this characterization by showing that a digraph D is k-arc-strong if and only if for any vertex v in D, D has k-arc-disjoint spanning arborescences rooted at v. We also prove a characterization of uniformly dense digraphs analogous to the characterization of uniformly dense undirected graphs in [Discrete Applied Math., 40 (1992) 285--302]. (Abstract shortened by ProQuest.).