Document Type
Article
Publication Date
2017
College/Unit
Eberly College of Arts and Sciences
Department/Program/Center
Biology
Abstract
Background: One of the major barriers to the development of lignocellulosic feedstocks is the recalcitrance of plant cell walls to deconstruction and saccharification. Recalcitrance can be reduced by targeting genes involved in cell wall biosynthesis, but this can have unintended consequences that compromise the agronomic performance of the trees under field conditions. Here we report the results of a field trial of fourteen distinct transgenic Populus deltoides lines that had previously demonstrated reduced recalcitrance without yield penalties under greenhouse conditions.
Results: Survival and productivity of the trial were excellent in the first year, and there was little evidence for reduced performance of the transgenic lines with modified target gene expression. Surprisingly, the most striking phenotypic effects in this trial were for two empty‐vector control lines that had modified bud set and bud flush. This is most likely due to somaclonal variation or insertional mutagenesis. Traits related to yield, crown architecture, herbivory, patho‐ gen response, and frost damage showed few significant differences between target gene transgenics and empty vector controls. However, there were a few interesting exceptions. Lines overexpressing the DUF231 gene, a putative O‐acetyltransferase, showed early bud flush and marginally increased height growth. Lines overexpressing the DUF266 gene, a putative glycosyltransferase, had significantly decreased stem internode length and slightly higher volume index. Finally, lines overexpressing the PFD2 gene, a putative member of the prefoldin complex, had a slightly reduced volume index.
Conclusions: This field trial demonstrates that these cell wall modifications, which decreased cell wall recalcitrance under laboratory conditions, did not seriously compromise first‐year performance in the field, despite substantial challenges, including an outbreak of a stem boring insect (Gypsonoma haimbachiana), attack by a leaf rust pathogen (Melampsora spp.), and a late frost event. This bodes well for the potential utility of these lines as advanced biofuels feedstocks.
Digital Commons Citation
Macaya-Sanz, David; Chen, Jin-Gui; Kalluri, Udaya C.; Muchero, Wellington; Tschaplinski, Timothy J.; Gunter, Lee E.; Simpson, Sandra J.; Biswal, Ajaya K.; Bryan, Anthony C.; Payyavula, Raja; Xie, Meng; Yang, Yongil; Zhang, Jin; Mohnen, Debra; Tuskan, Gerald A.; and DiFazio, Stephen P., "Agronomic performance of Populus deltoides trees engineered for biofuel production" (2017). Faculty & Staff Scholarship. 1272.
https://researchrepository.wvu.edu/faculty_publications/1272
Source Citation
Macaya-Sanz, D., Chen, J., Kalluri, U.C. et al. Agronomic performance of Populus deltoides trees engineered for biofuel production. Biotechnol Biofuels 10, 253 (2017). https://doi.org/10.1186/s13068-017-0934-6
Comments
© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated