Author ORCID Identifier
N/A
https://orcid.org/0000-0003-3344-4268
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Document Type
Article
Publication Date
2017
College/Unit
Eberly College of Arts and Sciences
Department/Program/Center
Biochemistry
Abstract
Here we report multiple lines of evidence for a comprehensive model of energy metabolism in the vertebrate eye. Metabolic flux, locations of key enzymes, and our finding that glucose enters mouse and zebrafish retinas mostly through photoreceptors support a conceptually new model for retinal metabolism. In this model, glucose from the choroidal blood passes through the retinal pigment epithelium to the retina where photoreceptors convert it to lactate. Photoreceptors then export the lactate as fuel for the retinal pigment epithelium and for neighboring Mu ̈ ller glial cells. We used human retinal epithelial cells to show that lactate can suppress consumption of glucose by the retinal pigment epithelium. Suppression of glucose consumption in the retinal pigment epithelium can increase the amount of glucose that reaches the retina. This framework for understanding metabolic relationships in the vertebrate retina provides new insights into the underlying causes of retinal disease and age-related vision loss.
Digital Commons Citation
Kanow, Mark A.; Giarmarco, Michelle M.; Jankowski, Connor S R; Tsantilas, Kristine; Engel, Abbi L.; Du, Jianhai; Linton, Jonathan D.; Farnsworth, Christopher C.; Sloat, Stephanie R.; Rountree, Austin; Sweet, Ian R.; Lindsay, Ken J.; Parker, Edward D.; Brockerhoff, Susan E.; Sadilek, Martin; Chao, Jennifer R.; and Hurley, James B., "Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye" (2017). Faculty & Staff Scholarship. 1413.
https://researchrepository.wvu.edu/faculty_publications/1413
Source Citation
Abstract. (n.d.). eLife Sciences Publications, Ltd. https://doi.org/10.7554/elife.28899.001
Comments
Copyright Kanow et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.