Document Type

Article

Publication Date

2019

College/Unit

Statler College of Engineering and Mining Resources

Department/Program/Center

Mechanical and Aerospace Engineering

Abstract

Abstract: We present a high-throughput nanoindentation study of in situ bending effects on incipient plastic deformation behavior of polycrystalline and single-crystalline pure aluminum and pure copper at ultranano depths (< 200 nm). We find that hardness displays a statistically inverse dependence on in-plane stress for indentation depths smaller than 10 nm, and the dependence disappears for larger indentation depths. In contrast, plastic noise in the nanoindentation force and displacement displays statistically robust noise features, independently of applied stresses. Our experimental results suggest the existence of a regime in Face Centered Cubic (FCC) crystals where ultranano hardness is sensitive to residual applied stresses, but plasticity pop-in noise is insensitive to it.

Source Citation

Bolin, R., Yavas, H., Song, H., Hemker, K. J., & Papanikolaou, S. (2019). Bending Nanoindentation and Plasticity Noise in FCC Single and Polycrystals. Crystals, 9(12), 652. https://doi.org/10.3390/cryst9120652

Comments

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.