Author ORCID Identifier
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Document Type
Article
Publication Date
2018
College/Unit
School of Medicine
Department/Program/Center
Physiology, Pharmacology & Neuroscience
Abstract
DNA damage is presumed to be one type of stochastic macromolecular damage that contributes to aging, yet little is known about the precise mechanism by which DNA damage drives aging. Here, we attempt to address this gap in knowledge using DNA repair-deficient C. elegans and mice. ERCC1-XPF is a nuclear endonuclease required for genomic stability and loss of ERCC1 in humans and mice accelerates the incidence of age-related pathologies. Like mice, ercc-1 worms are UV sensitive, shorter lived, display premature functional decline and they accumulate spontaneous oxidative DNA lesions (cyclopurines) more rapidly than wild-type worms. We found that ercc-1 worms displayed early activation of DAF-16 relative to wild-type worms, which conferred resistance to multiple stressors and was important for maximal longevity of the mutant worms. However, DAF- 16 activity was not maintained over the lifespan of ercc-1 animals and this decline in DAF-16 activation cor- responded with a loss of stress resistance, a rise in oxidant levels and increased morbidity, all of which were cep- 1/ p53 dependent. A similar early activation of FOXO3A (the mammalian homolog of DAF-16), with increased resistance to oxidative stress, followed by a decline in FOXO3A activity and an increase in oxidant abundance was observed in Ercc1-/- primary mouse embryonic fibroblasts. Likewise, in vivo, ERCC1-deficient mice had transient activation of FOXO3A in early adulthood as did middle-aged wild-type mice, followed by a late life decline. The healthspan and mean lifespan of ERCC1 deficient mice was rescued by inactivation of p53. These data indicate that activation of DAF-16/FOXO3A is a highly conserved response to genotoxic stress that is important for suppressing consequent oxidative stress. Correspondingly, dysregulation of DAF-16/FOXO3A appears to underpin shortened healthspan and lifespan, rather than the increased DNA damage burden itself.
Digital Commons Citation
Gurkar, Aditi U.; Robinson, Andria R.; Cui, Yuxiang; Li, Xuesen; Allani, Shailaja K.; Webster, Amanda; Muravia, Mariya; Fallahi, Mohammad; Weissbach, Herbert; Robbins, Paul D.; Wang, Yinsheng; Kelley, Eric E.; Croix, Claudette M. St.; Niedernhofer, Laura J.; and Gill, Matthew S., "Dysregulation of DAF-16/FOXO3A-mediated stress responses accelerates T oxidative DNA damage induced aging" (2018). Faculty & Staff Scholarship. 1444.
https://researchrepository.wvu.edu/faculty_publications/1444
Source Citation
Gurkar, A. U., Robinson, A. R., Cui, Y., Li, X., Allani, S. K., Webster, A., Muravia, M., Fallahi, M., Weissbach, H., Robbins, P. D., Wang, Y., Kelley, E. E., Croix, C. M. S., Niedernhofer, L. J., & Gill, M. S. (2018). Dysregulation of DAF-16/FOXO3A-mediated stress responses accelerates oxidative DNA damage induced aging. Redox Biology, 18, 191–199. https://doi.org/10.1016/j.redox.2018.06.005
Included in
Cell Biology Commons, Medical Molecular Biology Commons, Pharmacology Commons, Physiology Commons
Comments
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).