Author ORCID Identifier

N/A

https://orcid.org/0000-0002-0305-5993

Document Type

Article

Publication Date

2018

College/Unit

Davis College of Agriculture, Natural Resources and Design

Department/Program/Center

Agricultural and Resource Economics

Abstract

The purpose of this research was to assess the difference between Soil and Water Assessment Tool (SWAT) simulated pre-development and contemporary developed loading regimes in a mixed-land-use watershed of the central United States (US). Native land cover based on soil characteristics was used to simulate pre-development loading regimes using The Soil and Water Assessment Tool (SWAT). Loading targets were calculated for each major element of a pre-development loading regime. Simulated pre-development conditions were associated with increased retention and decreased export of sediment and nutrients when compared to observed developed conditions. Differences between simulated pre-development and observed developed maximum daily yields (loads per unit area) of suspended sediment (SS), total phosphorus (TP), and total inorganic nitrogen (TIN) ranged from 35.7 to 59.6 Mg km−2 (SS); 23.3 to 52.5 kg km−2 (TP); and, 113.2 to 200.8 kg km−2 (TIN), respectively. Average annual maximum daily load was less during simulated pre-development conditions when compared to observed developed conditions by ranges of 1307 to 6452 Mg day−1 (SS), 0.8 to 5.4 kg day−1 (TP), and 4.9 to 26.9 kg day−1 (TIN), respectively. Hydrologic modeling results indicated that the differences in annual maximum daily load were causally linked to land use and land cover influence on sediment and nutrient loading. The differences between SWAT simulated pre-development and observed contemporary loading regimes from this study point to a need for practical loading targets that support contemporary management and integrated flow and pollutant loading regimes.

Source Citation

Zeiger, S., & Hubbart, J. (2018). Assessing the Difference between Soil and Water Assessment Tool (SWAT) Simulated Pre-Development and Observed Developed Loading Regimes. Hydrology, 5(2), 29. https://doi.org/10.3390/hydrology5020029

Comments

  1. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.