Author ORCID Identifier

N/A

N/A

N/A

N/A

N/A

N/A

https://orcid.org/0000-0003-2142-6716

Document Type

Article

Publication Date

2017

College/Unit

Davis College of Agriculture, Natural Resources and Design

Department/Program/Center

Division of Animal and Nutritional Sciences

Abstract

Coding/functional SNPs change the biological function of a gene and, therefore, could serve as “large-effect” genetic markers. In this study, we used two bioinformatics pipelines, GATK and SAMtools, for discovering coding/functional SNPs with allelic-imbalances associated with total body weight, muscle yield, muscle fat content, shear force, and whiteness. Phenotypic data were collected for approximately 500 fish, representing 98 families (5 fish/family), from a growth-selected line, and the muscle transcriptome was sequenced from 22 families with divergent phenotypes (4 low- versus 4 high-ranked families per trait).

Results

GATK detected 59,112 putative SNPs; of these SNPs, 4798 showed allelic imbalances (>2.0 as an amplification and

Conclusion

These results demonstrate utility of RNA-Seq in assessing phenotype-associated allelic imbalances in pooled RNA-Seq samples. The SNPs identified in this study were included in a new SNP-Chip design (available from Affymetrix) for genomic and genetic analyses in rainbow trout.

Source Citation

Al-Tobasei, R., Ali, A., Leeds, T.D. et al. Identification of SNPs associated with muscle yield and quality traits using allelic-imbalance analyses of pooled RNA-Seq samples in rainbow trout. BMC Genomics 18, 582 (2017). https://doi.org/10.1186/s12864-017-3992-z

Comments

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.