Document Type

Article

Publication Date

2019

College/Unit

Statler College of Engineering and Mining Resources

Department/Program/Center

Mining Engineering

Abstract

Many numerical simulation studies of coal spontaneous combustion have focused on the leakage flow field in the mine gob. However, most of these studies isolate the gob from the mine ventilation system, failing to consider the effects of air leakage on gob boundary conditions. A novel model coupling the mine ventilation network (MVN) and gob flow field (GFF) has been developed to simulate the overall mine ventilation system. The concept of network boundary node was proposed and the corresponding air flow rate balance equations were developed based on the node pressure method for MVN calculation and the finite element method for GFF simulation. These equations, containing the rate of air flow not only from the branches but also from the gob, revealed the coupling relationship between 1D MVN and 2D/3D GFF. An iterative solution technique was developed to solve the coupling model, which has been incorporated into a program i-MVS. An illustrative example with coarse mesh is used to verify the stability and convergence of the model. Results of an application case show that the coupling model has sufficient precision and the developed software is efficient in implementing the computations.

Source Citation

Many numerical simulation studies of coal spontaneous combustion have focused on the leakage flow field in the mine gob. However, most of these studies isolate the gob from the mine ventilation system, failing to consider the effects of air leakage on gob boundary conditions. A novel model coupling the mine ventilation network (MVN) and gob flow field (GFF) has been developed to simulate the overall mine ventilation system. The concept of network boundary node was proposed and the corresponding air flow rate balance equations were developed based on the node pressure method for MVN calculation and the finite element method for GFF simulation. These equations, containing the rate of air flow not only from the branches but also from the gob, revealed the coupling relationship between 1D MVN and 2D/3D GFF. An iterative solution technique was developed to solve the coupling model, which has been incorporated into a program i-MVS. An illustrative example with coarse mesh is used to verify the stability and convergence of the model. Results of an application case show that the coupling model has sufficient precision and the developed software is efficient in implementing the computations.

Comments

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.