Author ORCID Identifier
Document Type
Article
Publication Date
1996
Abstract
In momentum space the time-ordered, retarded, and Feynman thermal propagators all satisfy rather simple dispersion relations. In coordinate space the first two propagators are related to the thermal Wightman function Tr[{phi}({ital x}){phi}(0){ital e}{sup {minus}{beta}{ital H}}]. However, the Feynman thermal propagator in coordinate space, {ital D}{sub {ital F}}({ital x}), is not related to this thermal average and does not satisfy a KMS condition in complex time. When expressed in terms of matrix elements of the field operator, it requires a new type of operator ordering. {copyright} {ital 1996 The American Physical Society.}
Digital Commons Citation
Weldon, H. Arthur, "Finite-temperature Feynman propagator in operator form" (1996). Faculty & Staff Scholarship. 166.
https://researchrepository.wvu.edu/faculty_publications/166
Source Citation
Weldon, H. Arthur. (1996). Finite-Temperature Feynman Propagator In Operator Form. Physical Review DParticles and Fields, 53(12), 7265-7269. http://doi.org/10.1103/PhysRevD.53.7265