Document Type

Article

Publication Date

2018

College/Unit

Statler College of Engineering and Mining Resources

Department/Program/Center

Lane Department of Computer Science and Electrical Engineering

Abstract

In this work, we study two approaches for the problem of RNA-Protein Interaction (RPI). In the first approach, we use a feature-based technique by combining extracted features from both sequences and secondary structures. The feature-based approach enhanced the prediction accuracy as it included much more available information about the RNA-protein pairs. In the second approach, we apply search algorithms and data structures to extract effective string patterns for prediction of RPI, using both sequence information (protein and RNA sequences), and structure information (protein and RNA secondary structures). This led to different string-based models for predicting interacting RNA-protein pairs. We show results that demonstrate the effectiveness of the proposed approaches, including comparative results against leading state-of-the-art methods.

Source Citation

Adjeroh, D., Allaga, M., Tan, J., Lin, J., Jiang, Y., Abbasi, A., & Zhou, X. (2018). Feature-Based and String-Based Models for Predicting RNA-Protein Interaction. Molecules, 23(3), 697. https://doi.org/10.3390/molecules23030697

Comments

  1. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.