Author ORCID Identifier
https://orcid.org/0000-0002-4412-5599
N/A
https://orcid.org/0000-0002-0414-9748
https://orcid.org/0000-0001-9580-9213
N/A
N/A
Document Type
Article
Publication Date
2019
College/Unit
Davis College of Agriculture, Natural Resources and Design
Department/Program/Center
Geology and Geography
Abstract
Despite the need for quality land cover information, large-area, high spatial resolution land cover mapping has proven to be a difficult task for a variety of reasons including large data volumes, complexity of developing training and validation datasets, data availability, and heterogeneity in data and landscape conditions. We investigate the use of geographic object-based image analysis (GEOBIA), random forest (RF) machine learning, and National Agriculture Imagery Program (NAIP) orthophotography for mapping general land cover across the entire state of West Virginia, USA, an area of roughly 62,000 km2. We obtained an overall accuracy of 96.7% and a Kappa statistic of 0.886 using a combination of NAIP orthophotography and ancillary data. Despite the high overall classification accuracy, some classes were difficult to differentiate, as highlight by the low user’s and producer’s accuracies for the barren, impervious, and mixed developed classes. In contrast, forest, low vegetation, and water were generally mapped with accuracy. The inclusion of ancillary data and first- and second-order textural measures generally improved classification accuracy whereas band indices and object geometric measures were less valuable. Including super-object attributes improved the classification slightly; however, this increased the computational time and complexity. From the findings of this research and previous studies, recommendations are provided for mapping large spatial extents.
Digital Commons Citation
Maxwell, Aaron E.; Strager, Michael P.; Warner, Timothy A.; Ramezan, Christopher A.; Morgan, Alice N.; and Pauley, Cameron E., "Large-Area, High Spatial Resolution Land Cover Mapping Using Random Forests, GEOBIA, and NAIP Orthophotography: Findings and Recommendations" (2019). Faculty & Staff Scholarship. 1992.
https://researchrepository.wvu.edu/faculty_publications/1992
Source Citation
Maxwell, A. E., Strager, M. P., Warner, T. A., Ramezan, C. A., Morgan, A. N., & Pauley, C. E. (2019). Large-Area, High Spatial Resolution Land Cover Mapping Using Random Forests, GEOBIA, and NAIP Orthophotography: Findings and Recommendations. Remote Sensing, 11(12), 1409. https://doi.org/10.3390/rs11121409
Comments
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)