Author ORCID Identifier
https://orcid.org/0000-0003-2195-2513
N/A
N/A
N/A
N/A
N/A
N/A
https://orcid.org/0000-0002-1688-5558
N/A
N/A
N/A
N/A
N/A
N/A
Document Type
Article
Publication Date
2018
College/Unit
Statler College of Engineering and Mining Resources
Department/Program/Center
Chemical and Biomedical Engineering
Abstract
Heteroatom-doped carbon dots (CDs) with excellent optical characteristics and negligible toxicity have emerged in many applications including bioimaging, biosensing, photocatalysis, and photothermal therapy. The metal-doping of CDs using various heteroatoms results in an enhancement of the photophysics but also imparts them with multifunctionality. However, unlike nonmetal doping, typical metal doping results in low fluorescence quantum yields (QYs), and an unclear photoluminescence mechanism. In this contribution, we detail results concerning zinc doped CDs (Zn-CDs) with QYs of up to 35%. The zinc ion charges serve as a surface passivating agent and prevent the aggregation of graphene p–p stacking, leading to an increase in the QY of the Zn-CDs. Structural and chemical investigations using spectroscopic and first principle simulations further revealed the effects of zinc doping on the CDs. The robust Zn-CDs were used for the ultra-trace detection of Hg2+ with a detection limit of 0.1 mM, and a quench mechanism was proposed. The unique optical properties of the Zn-CDs have promise for use in applications such as in vivo sensing and future phototherapy applications.
Digital Commons Citation
Xu, Quan; Cai, Wei; Zhang, Miaoran; Ye, Yingchun; Li, Yeqing; Zhang, Lipeng; Guo, Yongjian; Yu, Zhiqiang; Li, Siyu; Lin, Xun; Chen, Yusheng; Lou, Yan; Street, Jason; and Xu, Meng, "Photoluminescence mechanism and applications of Zn-doped carbon dots" (2018). Faculty & Staff Scholarship. 2026.
https://researchrepository.wvu.edu/faculty_publications/2026
Source Citation
Xu, Q., Cai, W., Zhang, M., Su, R., Ye, Y., Li, Y., Zhang, L., Guo, Y., Yu, Z., Li, S., Lin, X., Chen, Y., Luo, Y., Street, J., & Xu, M. (2018). Photoluminescence mechanism and applications of Zn-doped carbon dots. RSC Advances, 8(31), 17254–17262. https://doi.org/10.1039/c8ra02756k
Included in
Chemical Engineering Commons, Chemistry Commons, Orthopedics Commons, Pharmacy and Pharmaceutical Sciences Commons