Document Type

Article

Publication Date

2019

Department/Program/Center

Lane Department of Computer Science and Electrical Engineering

Abstract

This paper proposes a novel cooperative secondary control strategy for microgrids which is fully distributed. There is a two-layered coordination, which exists between inverter based DGs of both types, i.e. Voltage Source Inverter (VSI) and Current Source Inverter (CSI), also called PQ inverter. In first layer of the proposed two-layered cooperative control strategy, VSIs will take care of the primary average voltage regulation by implementing the average consensus algorithm (ACA); then in the second layer of control, the PQ inverters will improve the voltage quality of the microgrid while maintaining the average voltage of buses at the same desired level. Zone dedication algorithm is utilized in the second layer for voltage quality purposes based on sensitivity analysis. The sensitivity analysis is based on Simplified Jacobian matrix and the result of that is used to define the zone related to each DG in the microgrid. The goal of this zone dedication is to assign loads to the DGs that can compensate their changes with less effort (generating less power) than the others. There are two major contributions in this paper; 1- PQ inverters are effectively involved to increase microgrids capacity for better power management by introducing sensitivity to the PQ inverters set-point. This is defined based on the structure of the microgrid and takes into account the location of load changes. 2- The proposed strategy not only focuses on transient response but also improves the steady state response which smooths the voltage profile of the system while keeping the average voltage at the same desired level. The algorithm has been applied to a 13 bus system with a fully distributed communication in which each VSI inverter only communicates with its immediate neighbors and each PQ inverter is only in touch with associated bordering agents. The conclusive results verify that the proposed control strategy is an effective way to control the microgrid's voltage to have a smoother and stable voltage profile. The analysis also confirms the robustness of the proposed cooperative control in presence of possible time delays.

Source Citation

Doost Mohammadi, F., Keshtkar, H., Dehghan Banadaki, A., & Feliachi, A. (2019). A novel cooperative distributed secondary controller for VSI and PQ inverters of AC microgrids. Heliyon, 5(6), e01823. https://doi.org/10.1016/j.heliyon.2019.e01823

Comments

Contents lists available at ScienceDirect Heliyon journal homepage: www.heliyon.com https://doi.org/10.1016/j.heliyon.2019.e01823 Received 22 July 2018; Received in revised form 23 February 2019; Accepted 22 May 2019 2405-8440/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.