Document Type
Article
Publication Date
2019
College/Unit
Davis College of Agriculture, Natural Resources and Design
Department/Program/Center
Division of Forestry and Natural Resources
Abstract
Land use can radically degrade stream physical habitat via alterations to channel geomorphology and sedimentological characteristics. However, independent and combined influences such as those of agricultural and urban land use practices on channel geomorphology and substrate composition remain poorly understood. To further understanding of mixed land use influence on stream physical habitat, an intensive, 56 km hydrogeomorphological assessment was undertaken in a representative mixed land use watershed located in Midwestern USA. Sub-objectives included quantitative characterization of (1) channel geomorphology, (2) substrate frequency and embeddedness, and (3) relationships between land use, channel geomorphology, and substrate frequency and embeddedness. Channel geomorphology, and stream substrate data were directly measured at survey transects (n = 561) every 100 m of the entire 56 km distance of the reference stream. Observed data were averaged within five sub-basins (Sites #1 to #5) nested across an agricultural-urban land use gradient. Multiple regression results showed agricultural and urban land use explained nearly all of the variance in average width to depth ratios (R2 = 0.960; p = 0.020; n = 5), and maximum bank angle (R2 = 0.896; p = 0.052; n = 5). Streambed substrate samples of pools indicated significantly (p < 0.001) increased substrate embeddedness at agricultural Site #1 (80%) located in the headwaters and urban Site #5 (79%) located in the lower reaches compared to rural-urban Sites #2 to #4 (39 to 57%) located in the mid-reaches of the study stream. Streambed substrate embeddedness samples of riffles that ranged from 51 to 72% at Sites #1 and #5, and 27 to 46% at Sites #2 to #4 were significantly different between sites (p = 0.013). Percent embeddedness increased with downstream distance by 5% km−1 with the lower urban reaches indicating symptoms of urban stream syndrome linked to degraded riffle habitat. Collectively, observed alterations to channel morphology and substrate composition point to land use alterations to channel geomorphology metrics correlated with increased substrate embeddedness outside of mid-reaches where bedrock channel constraints accounted for less than 3% of substrate frequency. Results from this study show how a hydrogeomorphological assessment can help elucidate casual factors, target critical source areas, and thus, guide regional stream restoration efforts of mixed-land-use watersheds.
Digital Commons Citation
Zeiger, Sean J. and Hubbart, Jason A., "Characterizing Land Use Impacts on Channel Geomorphology and Streambed Sedimentological Characteristics" (2019). Faculty & Staff Scholarship. 2106.
https://researchrepository.wvu.edu/faculty_publications/2106
Source Citation
Zeiger, S. J., & Hubbart, J. A. (2019). Characterizing Land Use Impacts on Channel Geomorphology and Streambed Sedimentological Characteristics. Water, 11(5), 1088. https://doi.org/10.3390/w11051088
Comments
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).