Document Type

Article

Publication Date

2015

College/Unit

Eberly College of Arts and Sciences

Department/Program/Center

Biochemistry

Abstract

Background

The Src homology phosphotyrosyl phosphatase 2 (SHP2) is a positive effector of cell growth and survival signaling as well transformation induced by multiple tyrosine kinase oncogenes. Since the basal-like and triple-negative breast cancer (BTBC) is characterized by dysregulation of multiple tyrosine kinase oncogenes, we wanted to determine the importance of SHP2 in BTBC cell lines.

Methods

Short hairpin RNA-based and dominant-negative expression-based SHP2 inhibition techniques were used to interrogate the functional importance of SHP2 in BTBC cell biology. In addition, cell viability and proliferation assays were used to determine hormone dependency for growth and sensitivity to anti-estrogen treatment.

Results

We show that inhibition of SHP2 in BTBC cells induces luminal-like epithelial morphology while suppressing the mesenchymal and invasive property. We have termed this process as basal-to-luminal transition (BLT). The occurrence of BLT was confirmed by the loss of the basal marker alpha smooth muscle actin and the acquisition of the luminal marker cytokeratin 18 (CK18) expression. Furthermore, the occurrence of BLT led to estrogen receptor alpha (ERα) expression, hormone dependency, and sensitivity to tamoxifen treatment.

Conclusions

Our data show that inhibition of SHP2 induces BLT, ERα expression, dependency on estrogen for growth, and sensitivity to anti-hormone therapy. Therefore, inhibition of SHP2 may provide a therapeutic benefit in basal-like and triple-negative breast cancer.

Source Citation

Zhao, H., Agazie, Y.M. Inhibition of SHP2 in basal-like and triple-negative breast cells induces basal-to-luminal transition, hormone dependency, and sensitivity to anti-hormone treatment. BMC Cancer 15, 109 (2015). https://doi.org/10.1186/s12885-015-1131-2

Comments

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.