Document Type

Article

Publication Date

2016

College/Unit

Statler College of Engineering and Mining Resources

Department/Program/Center

Mechanical and Aerospace Engineering

Abstract

An experimental analysis of Global Positioning System (GPS) flight data collected onboard a Small Unmanned Aerial Vehicle (SUAV) is conducted in order to demonstrate that postprocessed kinematic Precise Point Positioning (PPP) solutions with precisions approximately 6 cm 3D Residual Sum of Squares (RSOS) can be obtained on SUAVs that have short duration flights with limited observational periods (i.e., only ∼≤5 minutes of data). This is a significant result for the UAV flight testing community because an important and relevant benefit of the PPP technique over traditional Differential GPS (DGPS) techniques, such as Real-Time Kinematic (RTK), is that there is no requirement for maintaining a short baseline separation to a differential GNSS reference station. Because SUAVs are an attractive platform for applications such as aerial surveying, precision agriculture, and remote sensing, this paper offers an experimental evaluation of kinematic PPP estimation strategies using SUAV platform data. In particular, an analysis is presented in which the position solutions that are obtained from postprocessing recorded UAV flight data with various PPP software and strategies are compared to solutions that were obtained using traditional double-differenced ambiguity fixed carrier-phase Differential GPS (CP-DGPS). This offers valuable insight to assist designers of SUAV navigation systems whose applications require precise positioning

Source Citation

Gross, J. N., Watson, R. M., D’Urso, S., & Gu, Y. (2016). Flight-Test Evaluation of Kinematic Precise Point Positioning of Small UAVs. International Journal of Aerospace Engineering, 2016, 1–11. https://doi.org/10.1155/2016/1259893

Comments

Copyright © 2016 Jason N. Gross et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Included in

Engineering Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.