Document Type
Article
Publication Date
2016
College/Unit
Statler College of Engineering and Mining Resources
Department/Program/Center
Not Listed
Abstract
Cyber physical systems (CPS) sense the environment based on wireless sensor networks. The sensing data of such systems present the characteristics of massiveness and multi-dimensionality. As one of the major monitoring methods used in in safe production monitoring and disaster early-warning applications, skyline query algorithms are extensively adopted for multiple-objective decision analysis of these sensing data. With the expansion of network sizes, the amount of sensing data increases sharply. Then, how to improve the query efficiency of skyline query algorithms and reduce the transmission energy consumption become pressing and difficult to accomplish issues. Therefore, this paper proposes a new energy-efficient skyline query method for massively multidimensional sensing data. First, the method uses a node cut strategy to dynamically generate filtering tuples with little computational overhead when collecting query results instead of issuing queries with filters. It can judge the domination relationship among different nodes, remove the detected data sets of dominated nodes that are irrelevant to the query, modify the query path dynamically, and reduce the data comparison and computational overhead. The efficient dynamic filter generated by this strategy uses little non-skyline data transmission in the network, and the transmission distance is very short. Second, our method also employs the tuple-cutting strategy inside the node and generates the local cutting tuples by the sub-tree with the node itself as the root node, which will be used to cut the detected data within the nodes of the sub-tree. Therefore, it can further control the non-skyline data uploading. A large number of experimental results show that our method can quickly return an overview of the monitored area and reduce the communication overhead. Additionally, it can shorten the response time and improve the efficiency of the query.
Digital Commons Citation
Wang, Yan; Wei, Wei; Deng, Qingxu; Liu, Wei; and Song, Houbing, "An Energy-Efficient Skyline Query for Massively Multidimensional Sensing Data" (2016). Faculty & Staff Scholarship. 2466.
https://researchrepository.wvu.edu/faculty_publications/2466
Source Citation
Wang, Y., Wei, W., Deng, Q., Liu, W., & Song, H. (2016). An Energy-Efficient Skyline Query for Massively Multidimensional Sensing Data. Sensors, 16(1), 83. https://doi.org/10.3390/s16010083
Comments
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).