Document Type
Article
Publication Date
2014
College/Unit
Statler College of Engineering and Mining Resources
Department/Program/Center
Lane Department of Computer Science and Electrical Engineering
Abstract
Humans utilize facial appearance, gender, expression, aging pattern, and other ancillary information to recognize individuals. It is interesting to observe how humans perceive facial age. Analyzing these properties can help in understanding the phenomenon of facial aging and incorporating the findings can help in designing effective algorithms. Such a study has two components - facial age estimation and age-separated face recognition. Age estimation involves predicting the age of an individual given his/her facial image. On the other hand, age-separated face recognition consists of recognizing an individual given his/her age-separated images. In this research, we investigate which facial cues are utilized by humans for estimating the age of people belonging to various age groups along with analyzing the effect of one's gender, age, and ethnicity on age estimation skills. We also analyze how various facial regions such as binocular and mouth regions influence age estimation and recognition capabilities. Finally, we propose an age-invariant face recognition algorithm that incorporates the knowledge learned from these observations. Key observations of our research are: (1) the age group of newborns and toddlers is easiest to estimate, (2) gender and ethnicity do not affect the judgment of age group estimation, (3) face as a global feature, is essential to achieve good performance in age-separated face recognition, and (4) the proposed algorithm yields improved recognition performance compared to existing algorithms and also outperforms a commercial system in the young image as probe scenario.
Digital Commons Citation
Yadav, Daksha; Singh, Richa; Vatsa, Mayank; and Noore, Afzel, "Recognizing Age-Separated Face Images: Humans and Machines" (2014). Faculty & Staff Scholarship. 2492.
https://researchrepository.wvu.edu/faculty_publications/2492
Source Citation
Yadav D, Singh R, Vatsa M, Noore A (2014) Recognizing Age-Separated Face Images: Humans and Machines. PLoS ONE 9(12): e112234. https://doi.org/10.1371/journal.pone.0112234
Comments
© 2014 Yadav et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.