Document Type

Article

Publication Date

2019

College/Unit

School of Medicine

Department/Program/Center

Orthopaedics

Abstract

Objectives

To investigate whether a combination of demineralized bone matrix (DBM) and bone marrow mesenchymal stem cells (BMSCs) infected with adenovirus-mediated- bone morphogenetic protein (Ad-BMP-2) and transforming growth factor-β3 (Ad-TGF-β3) promotes the repair of the full-thickness cartilage lesions in pig model.

Methods

BMSCs isolated from pig were cultured and infected with Ad-BMP-2(B group), Ad-TGF-β3 (T group), Ad-BMP-2 + Ad-TGF-β3(BT group), cells infected with empty Ad served as a negative group(N group), the expression of the BMP-2 and TGF-β3 were confirmed by immunofluorescence, PCR, and ELISA, the expression of SOX-9, type II collagen(COL-2A), aggrecan (ACAN) in each group were evaluated by real-time PCR at 1w, 2w, 3w, respectively. The chondrogenic differentiation of BMSCs was evaluated by type II collagen at 21d with immunohistochemical staining. The third-passage BMSCs infected with Ad-BMP-2 and Ad-TGF-β3 were suspended and cultured with DBM for 6 days to construct a new type of tissue engineering scaffold to repair full-thickness cartilage lesions in the femur condyles of pig knee, the regenerated tissue was evaluated at 1,2 and 3 months after surgery by gross appearance, H&E, safranin O staining and O'driscoll score.

Results

Ad-BMP-2 and Ad-TGF-β3 (BT group) infected cells acquired strong type II collagen staining compared with Ad-BMP-2 (B group) and Ad-TGF-β3 (T group) along. The Ad-BMP-2 and Ad-TGF-β3 infected BMSCs adhered and propagated well in DBM and the new type of tissue engineering scaffold produced hyaline cartilage morphology containing a stronger type II collagen and safranin O staining, the O'driscoll score was higher than other groups.

Conclusions

The DBM compound with Ad-BMP-2 and Ad-TGF-β3 infected BMSCs scaffold has a good biocompatibility and could well induce cartilage regeneration to repair the defects of joint cartilage. This technology may be efficiently employed for cartilage lesions repair in vivo.

Source Citation

Wang X, Li Y, Han R, He C, Wang G, Wang J, et al. (2014) Demineralized Bone Matrix Combined Bone Marrow Mesenchymal Stem Cells, Bone Morphogenetic Protein-2 and Transforming Growth Factor-β3 Gene Promoted Pig Cartilage Defect Repair. PLoS ONE 9(12): e116061. https://doi.org/10.1371/journal.pone.0116061

Comments

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.