Document Type

Article

Publication Date

2013

College/Unit

Statler College of Engineering and Mining Resources

Department/Program/Center

Mechanical and Aerospace Engineering

Abstract

Plasmonic metal nanostructures offer a promising route to improve the solar energy conversion efficiency of semiconductors. Here we show that incorporation of a hematite nanorod array into a plasmonic gold nanohole array pattern significantly improves the photoelectrochemical water splitting performance, leading to an approximately tenfold increase in the photocurrent at a bias of 0.23 V versus Ag|AgCl under simulated solar radiation. Plasmon-induced resonant energy transfer is responsible for enhancement at the energies below the band edge, whereas above the absorption band edge of hematite, the surface plasmon polariton launches a guided wave mode inside the nanorods, with the nanorods acting as miniature optic fibres, enhancing the light absorption. In addition, the intense local plasmonic field can suppress the charge recombination in the hematite nanorod photoanode in a photoelectrochemical cell. Our results may provide a general approach to overcome the low optical absorption and spectral utilization of thin semiconductor nanostructures, while further reducing charge recombination losses.

Source Citation

Li, J., Cushing, S., Zheng, P. et al. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat Commun 4, 2651 (2013). https://doi.org/10.1038/ncomms3651

Comments

& 2013 Macmillan Publishers Limited. All rights reserved.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.