Author ORCID Identifier

N/A

https://orcid.org/0000-0002-7824-0966

N/A

Document Type

Article

Publication Date

2013

College/Unit

Eberly College of Arts and Sciences

Department/Program/Center

Biochemistry

Abstract

Background

In vitro evidence indicates that tetrandrine (TT) can potentiate the action of chloroquine 40-fold against choloquine-resistant Plasmodium falciparum. The key question emanating from that study is “would tetrandine and chloroquine be highly effective in a live Aotus monkey model with chloroquine-resistant parasites”. This study was designed to closely mimic the pharmacological/anti-malarial activity in man.

Methods

The Vietnam Smith/RE strain of P. falciparum, which is chloroquine-resistant was used in this study. Previous experimental procedures were followed. Panamanian owl monkeys (Aotus) were inoculated with 5×106 erythrocytes parasitized with the CQ-resistant strain of P. falciparum. Oral drug treatment was with CQ (20 mg/kg) and/or tetrandrine at 15 mg/Kg, 30 mg/Kg or 60 mg/Kg or 25 mg/Kg depending on experimental conditions.

Results and Discussion

Parasitaemia was cleared rapidly with CQ and TT while CQ treatment alone was ineffective. Recrudescence of malaria occurred after seven days post-infection. However, four animals were treated orally with TT and CQ parasites were cleared. It is likely that monkeys were cured via a combination of both drug and host immune responses. A single Aotus monkey infected with P. falciparum and untreated with drugs, died. No side effects were observed with these drug treatments.

Conclusions

This combination of chloroquine and tetrandrine forms the basis of a new attack on chloroquine-resistant malaria - one based upon inhibition of the basis of chloroquine resistance, the multiple drug resistance pump. Previous studies demonstrated that the parasite MDR pump was found on parasite membranes using 3H azidopine photoaffinity labelling.

Since MDR-based choloroquine resistance is induced by chloroquine, the basis of the action of tetrandrine is the following: 1) tetrandrine inhibits the MDR pump by stimulating MDR ATPase which limits the energy of the pump by depletion of parasite ATP, 2) tetrandrine blocks the genetic factor which controls the induction of the pump. Therefore, it appears that the parasite cannot outsmart these mechanisms and produce a new mode of resistance. Only time will tell if this is correct.

Source Citation

Ye, Z., Van Dyke, K. & Rossan, R.N. Effective treatment with a tetrandrine/chloroquine combination for chloroquine-resistant falciparum malaria in Aotus monkeys. Malar J 12, 117 (2013). https://doi.org/10.1186/1475-2875-12-117

Comments

© 2013 Ye et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.