Document Type

Article

Publication Date

2012

College/Unit

Eberly College of Arts and Sciences

Department/Program/Center

Biology

Abstract

Here we describe the genome of Mesotoga prima MesG1.Ag4.2, the first genome of a mesophilic Thermotogales bacterium. Mesotoga prima was isolated from a polychlorinated biphenyl (PCB)-dechlorinating enrichment culture from Baltimore Harbor sediments. Its 2.97 Mb genome is considerably larger than any previously sequenced Thermotogales genomes, which range between 1.86 and 2.30 Mb. This larger size is due to both higher numbers of protein-coding genes and larger intergenic regions. In particular, the M. prima genome contains more genes for proteins involved in regulatory functions, for instance those involved in regulation of transcription. Together with its closest relative, Kosmotoga olearia, it also encodes different types of proteins involved in environmental and cell–cell interactions as compared with other Thermotogales bacteria. Amino acid composition analysis of M. prima proteins implies that this lineage has inhabited low-temperature environments for a long time. A large fraction of the M. prima genome has been acquired by lateral gene transfer (LGT): a DarkHorse analysis suggests that 766 (32%) of predicted protein-coding genes have been involved in LGT after Mesotogadiverged from the other Thermotogales lineages. A notable example of a lineage-specific LGT event is a reductive dehalogenase gene—a key enzyme in dehalorespiration, indicating M. prima may have a more active role in PCB dechlorination than was previously assumed.

Source Citation

Zhaxybayeva, O., Swithers, K. S., Foght, J., Green, A. G., Bruce, D., Detter, C., Han, S., Teshima, H., Han, J., Woyke, T., Pitluck, S., Nolan, M., Ivanova, N., Pati, A., Land, M. L., Dlutek, M., Doolittle, W. F., Noll, K. M., & Nesbø, C. L. (2012). Genome Sequence of the Mesophilic Thermotogales Bacterium Mesotoga prima MesG1.Ag.4.2 Reveals the Largest Thermotogales Genome To Date. Genome Biology and Evolution, 4(8), 812–820. https://doi.org/10.1093/gbe/evs059

Comments

ß The Author(s) 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.