Author ORCID Identifier
https://orcid.org/0000-0002-9979-6306
https://orcid.org/0000-0002-9857-0401
Document Type
Article
Publication Date
2011
College/Unit
Eberly College of Arts and Sciences
Department/Program/Center
Physics and Astronomy
Abstract
Topologically non-trivial superconductivity has been predicted to occur in superconductors with a sizable spin–orbit (SO) coupling in the presence of an external Zeeman splitting. Two such systems have been proposed: (a) s-wave superconductor pair potential is proximity induced on a semiconductor and (b) pair potential naturally arises from an intrinsic s-wave pairing interaction. As it is now well known, such systems in the form of a two-dimensional (2D) film or 1D nano-wires in a wire network can be used in topological quantum computation. When the external Zeeman splitting Γ crosses a critical value Γc, the system passes from a regular superconducting phase to a non-Abelian topological superconducting phase. In both cases (a) and (b) that we consider in this paper, the pair potential Δ is strictly s-wave in both the ordinary and the topological superconducting phases, which are separated by a topological quantum critical point at , where μ (Δ) is the chemical potential. On the other hand, since ΓcΔ, the Zeeman splitting required for the topological phase (Γ>Γc) far exceeds the value (Γ~Δ) above which an s-wave pair potential is expected to vanish (and the system to become non-superconducting) in the absence of SO coupling. We are thus led to the situation that the topological superconducting phase appears to set in a parameter regime at which the system is actually non-superconducting in the absence of SO coupling. In this paper, we address the question of how a pure s-wave pair potential can survive a strong Zeeman field to give rise to a topological superconducting phase. We show that the SO coupling is the crucial parameter for the quantum transition into and the robustness of the topologically non-trivial superconducting phase realized for ΓΔ.
Digital Commons Citation
Tewari, Sumanta; Stanescu, Tudor D.; Sau, Jay D.; and Sarma, Sankar Das, "Topologically non-trivial superconductivity in spin–orbit-coupled systems: bulk phases and quantum phase transitions" (2011). Faculty & Staff Scholarship. 2751.
https://researchrepository.wvu.edu/faculty_publications/2751
Source Citation
Tewari, S., Stanescu, T. D., Sau, J. D., & Das Sarma, S. (2011). Topologically non-trivial superconductivity in spin–orbit-coupled systems: bulk phases and quantum phase transitions. New Journal of Physics, 13(6), 65004. https://doi.org/10.1088/1367-2630/13/6/065004
Comments
© IOP Publishing Ltd and Deutsche Physikalische Gesellschaft