Document Type

Article

Publication Date

2011

College/Unit

Eberly College of Arts and Sciences

Department/Program/Center

Physics and Astronomy

Abstract

Topologically non-trivial superconductivity has been predicted to occur in superconductors with a sizable spin–orbit (SO) coupling in the presence of an external Zeeman splitting. Two such systems have been proposed: (a) s-wave superconductor pair potential is proximity induced on a semiconductor and (b) pair potential naturally arises from an intrinsic s-wave pairing interaction. As it is now well known, such systems in the form of a two-dimensional (2D) film or 1D nano-wires in a wire network can be used in topological quantum computation. When the external Zeeman splitting Γ crosses a critical value Γc, the system passes from a regular superconducting phase to a non-Abelian topological superconducting phase. In both cases (a) and (b) that we consider in this paper, the pair potential Δ is strictly s-wave in both the ordinary and the topological superconducting phases, which are separated by a topological quantum critical point at , where μ (Δ) is the chemical potential. On the other hand, since ΓcΔ, the Zeeman splitting required for the topological phase (Γ>Γc) far exceeds the value (Γ~Δ) above which an s-wave pair potential is expected to vanish (and the system to become non-superconducting) in the absence of SO coupling. We are thus led to the situation that the topological superconducting phase appears to set in a parameter regime at which the system is actually non-superconducting in the absence of SO coupling. In this paper, we address the question of how a pure s-wave pair potential can survive a strong Zeeman field to give rise to a topological superconducting phase. We show that the SO coupling is the crucial parameter for the quantum transition into and the robustness of the topologically non-trivial superconducting phase realized for ΓΔ.

Source Citation

Tewari, S., Stanescu, T. D., Sau, J. D., & Das Sarma, S. (2011). Topologically non-trivial superconductivity in spin–orbit-coupled systems: bulk phases and quantum phase transitions. New Journal of Physics, 13(6), 65004. https://doi.org/10.1088/1367-2630/13/6/065004

Comments

© IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.