Author ORCID Identifier
https://orcid.org/0000-0003-2862-3616
https://orcid.org/0000-0002-8888-2444
N/A
N/A
N/A
Document Type
Article
Publication Date
2009
College/Unit
Statler College of Engineering and Mining Resources
Department/Program/Center
Mechanical and Aerospace Engineering
Abstract
Background
Titanium dioxide (TiO2) nanomaterials have considerable beneficial uses as photocatalysts and solar cells. It has been established for many years that pigment-grade TiO2 (200 nm sphere) is relatively inert when internalized into a biological model system (in vivo or in vitro). For this reason, TiO2 nanomaterials are considered an attractive alternative in applications where biological exposures will occur. Unfortunately, metal oxides on the nanoscale (one dimension < 100 nm) may or may not exhibit the same toxic potential as the original material. A further complicating issue is the effect of modifying or engineering of the nanomaterial to be structurally and geometrically different from the original material.
Results
TiO2 nanospheres, short (< 5 μm) and long (> 15 μm) nanobelts were synthesized, characterized and tested for biological activity using primary murine alveolar macrophages and in vivo in mice. This study demonstrates that alteration of anatase TiO2 nanomaterial into a fibre structure of greater than 15 μm creates a highly toxic particle and initiates an inflammatory response by alveolar macrophages. These fibre-shaped nanomaterials induced inflammasome activation and release of inflammatory cytokines through a cathepsin B-mediated mechanism. Consequently, long TiO2 nanobelts interact with lung macrophages in a manner very similar to asbestos or silica.
Conclusions
These observations suggest that any modification of a nanomaterial, resulting in a wire, fibre, belt or tube, be tested for pathogenic potential. As this study demonstrates, toxicity and pathogenic potential change dramatically as the shape of the material is altered into one that a phagocytic cell has difficulty processing, resulting in lysosomal disruption.
Digital Commons Citation
Hamilton Jr, Raymond F.; Wu, Nianqiang; Porter, Dale; Buford, Mary; Wolfarth, Michael; and Holian, Andrij, "Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity" (2009). Faculty & Staff Scholarship. 2835.
https://researchrepository.wvu.edu/faculty_publications/2835
Source Citation
Hamilton, R.F., Wu, N., Porter, D. et al. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol 6, 35 (2009). https://doi.org/10.1186/1743-8977-6-35
Comments
© 2009 Hamilton et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.