Author ORCID Identifier
https://orcid.org/0000-0003-2142-6716
N/A
Document Type
Article
Publication Date
2007
College/Unit
Davis College of Agriculture, Natural Resources and Design
Department/Program/Center
Division of Animal and Nutritional Sciences
Abstract
Background
Fast, efficiently growing animals have increased protein synthesis and/or reduced protein degradation relative to slow, inefficiently growing animals. Consequently, minimizing the energetic cost of protein turnover is a strategic goal for enhancing animal growth. Characterization of gene expression profiles associated with protein turnover would allow us to identify genes that could potentially be used as molecular biomarkers to select for germplasm with improved protein accretion.
Results
We evaluated changes in hepatic global gene expression in response to 3-week starvation in rainbow trout (Oncorhynchus mykiss). Microarray analysis revealed a coordinated, down-regulated expression of protein biosynthesis genes in starved fish. In addition, the expression of genes involved in lipid metabolism/transport, aerobic respiration, blood functions and immune response were decreased in response to starvation. However, the microarray approach did not show a significant increase of gene expression in protein catabolic pathways. Further studies, using real-time PCR and enzyme activity assays, were performed to investigate the expression of genes involved in the major proteolytic pathways including calpains, the multi-catalytic proteasome and cathepsins. Starvation reduced mRNA expression of the calpain inhibitor, calpastatin long isoform (CAST-L), with a subsequent increase in the calpain catalytic activity. In addition, starvation caused a slight but significant increase in 20S proteasome activity without affecting mRNA levels of the proteasome genes. Neither the mRNA levels nor the activities of cathepsin D and L were affected by starvation.
Conclusion
These results suggest a significant role of calpain and 20S proteasome pathways in protein mobilization as a source of energy during fasting and a potential association of the CAST-L gene with fish protein accretion.
Digital Commons Citation
Salem, Mohamed; Silverstein, Jeff; Rexroad III, Caird E.; and Yao, Jianbo, "Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss)" (2007). Faculty & Staff Scholarship. 2845.
https://researchrepository.wvu.edu/faculty_publications/2845
Source Citation
Salem, M., Silverstein, J., Rexroad, C.E. et al. Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss). BMC Genomics 8, 328 (2007). https://doi.org/10.1186/1471-2164-8-328
Comments
© 2007 Salem et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.