"Rank-Based Attachment Leads to Power Law Graphs" by Jeannette Janssen and PaweŁ PraŁat
 

Document Type

Article

Publication Date

2010

Abstract

We investigate the degree distribution resulting from graph generation models based on rank-based attachment. In rank-based attachment, all vertices are ranked according to a ranking scheme. The link probability of a given vertex is proportional to its rank raised to the power ―α, for some α ∈ (0, 1). Through a rigorous analysis, we show that rank-based attachment models lead to graphs with a power law degree distribution with exponent 1 + 1/α whenever vertices are ranked according to their degree, their age, or a randomly chosen fitness value. We also investigate the case where the ranking is based on the initial rank of each vertex; the rank of existing vertices changes only to accommodate the new vertex. Here, we obtain a sharp threshold for power law behavior. Only if initial ranks are biased towards lower ranks, or chosen uniformly at random, do we obtain a power law degree distribution with exponent 1 + 1/α. This indicates that the power law degree distribution often observed in nature can be explained by a rank-based attachment scheme, based on a ranking scheme that can be derived from a number of different factors; the exponent of the power law can be seen as a measure of the strength of the attachment.

Source Citation

Janssen, Jeannette., &PraŁat, PaweŁ. (2010). Rank-Based Attachment Leads To Power Law Graphs. SIAM Journal on Discrete Mathematics, 24(2), 420-440. http://doi.org/10.1137/080716967

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.