Document Type

Article

Publication Date

2008

Abstract

The following open problem was proposed by Archdeacon: Characterize all graphical sequences π such that some realization of π admits a nowhere-zero 3-flow. The purpose of this paper is to resolve this problem and present a complete characterization: A graphical sequence π = (d1, d2, ., dn) with minimum degree at least two has a realization that admits a nowhere-zero 3-flow if and only if π ≠ (34, 2), (k, 3k), (k2, 3k―1), where k is an odd integer.

Source Citation

Luo, Rong., Xu, Rui., Zang, Wenan., & Zhang, Cun-Quan. (2008). Realizing Degree Sequences With Graphs Having Nowhere-Zero 3-Flows. SIAM Journal on Discrete Mathematics, 22(2), 500-519. http://doi.org/10.1137/070687372

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.