"Protein Synthesis Required For Long-Term Memory Is Induced By Pkc Acti" by D. L. Alkon, H. Epstein et al.
 

Document Type

Article

Publication Date

2005

Abstract

Protein synthesis has long been known to be required for associative learning to consolidate into long-term memory. Here we demonstrate that PKC isozyme activation on days before training can induce the synthesis of proteins necessary and sufficient for subsequent long-term memory consolidation. Bryostatin (Bryo), a macrolide lactone with efficacy in subnanomolar concentrations and a potential therapeutic for Alzheimer's disease, is a potent activator of PKC, some of whose isozymes undergo prolonged activation after associative learning. Under normal conditions, two training events with paired visual and vestibular stimuli cause short-term memory of the mollusc Hermissenda that lasts ≈7 min. However, after 4-h exposures to Bryo (0.25 ng/ml) on two preceding days, the same two training events produced long-term conditioning that lasted >1 week and that was not blocked by anisomycin (1 μg/ml). Anisomycin, however, eliminated long-term memory lasting at least 1 week after nine training events. Both the nine training events alone and two Bryo exposures plus two training event regimens caused comparably increased levels of the PKC α-isozyme substrate calexcitin in identified type B neurons and enhanced PKC activity in the membrane fractions. Furthermore, Bryo increased overall protein synthesis in cultured mammalian neurons by up to 60% for >3 days. The specific PKC antagonist Ro-32-0432 blocked much of this Bryo-induced protein synthesis as well as the Bryo-induced enhancement of the behavioral conditioning. Thus, Bryo-induced PKC activation produces those proteins necessary and sufficient for long-term memory on days in advance of the training events themselves.

Source Citation

Alkon, D. L., Epstein, H., Kuzirian, A., Bennett, M. C., & Nelson, T. J. (2005). Protein Synthesis Required For Long-Term Memory Is Induced By Pkc Activation On Days Before Associative Learning. Proceedings Of The National Academy Of Sciences Of The United States Of America, 102(45), 16432-16437. http://doi.org/10.1073/Pnas.0508001102

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.