Document Type

Article

Publication Date

1997

College/Unit

Eberly College of Arts and Sciences

Department/Program/Center

Mathematics

Abstract

In this note we will show that many classes F of real functions f : R → R can be characterized by preimages of sets in a sense that there exist families A and D of subsets of R such that F = C(D, A), where C(D, A) = {f ∈ R R : f −1 (A) ∈ D for every A ∈ A}. In particular, we will show that there exists a Bernstein B ⊂ R such that the family ∆ of all derivatives can be represented as ∆ = C(D, A), where A = S c∈R {(−∞, c),(c, ∞), B + c} and D = {g −1 (A): A ∈ A & g ∈ ∆}.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.