Document Type

Article

Publication Date

2012

College/Unit

Eberly College of Arts and Sciences

Department/Program/Center

Mathematics

Abstract

This note shows that if a subset S of R is such that some continuous function f from R to R has the property "f[S] contains a perfect set," then some infinitely many times differentiable function g (from R to R) has the same property. Moreover, if f[S] is nowhere dense, then the g can have the stronger property "g[S] is perfect." The last result is used to show that it is consistent with ZFC (the usual axioms of set theory) that for each subset S of R of cardinality continuum there exists an infinitely many times differentiable function g from R to R such that g[S] contains a perfect set.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.