Document Type
Article
Publication Date
2016
College/Unit
Statler College of Engineering and Mining Resources
Department/Program/Center
Mechanical and Aerospace Engineering
Abstract
Nanoionics has become increasingly important in devices and systems related to energy conversion and storage. Nevertheless, nanoionics and nanostructured electrodes development has been challenging for solid oxide fuel cells (SOFCs) owing to many reasons including poor stability of the nanocrystals during fabrication of SOFCs at elevated temperatures. In this study, a conformal mesoporous ZrO2 nanoionic network was formed on the surface of La1−xSrxMnO3/yttria-stabilized zirconia (LSM/YSZ) cathode backbone using Atomic Layer Deposition (ALD) and thermal treatment. The surface layer nanoionic network possesses open mesopores for gas penetration, and features a high density of grain boundaries for enhanced ion-transport. The mesoporous nanoionic network is remarkably stable and retains the same morphology after electrochemical operation at high temperatures of 650–800 °C for 400 hours. The stable mesoporous ZrO2 nanoionic network is further utilized to anchor catalytic Pt nanocrystals and create a nanocomposite that is stable at elevated temperatures. The power density of the ALD modified and inherently functional commercial cells exhibited enhancement by a factor of 1.5–1.7 operated at 0.8 V at 750 °C.
Digital Commons Citation
Chen, Yun; Gerdes, Kirk; and Song, Xueyan, "Nanoionics and Nanocatalysts: Conformal Mesoporous Surface Scaffold for Cathode of Solid Oxide Fuel Cells" (2016). Faculty & Staff Scholarship. 914.
https://researchrepository.wvu.edu/faculty_publications/914
Source Citation
Chen, Y., Gerdes, K., & Song, X. (2016). Nanoionics and Nanocatalysts: Conformal Mesoporous Surface Scaffold for Cathode of Solid Oxide Fuel Cells. Scientific Reports, 6(1).
Comments
The article is supported by the WVU Libraries' Open Access Author Fund.