Semester
Fall
Date of Graduation
2021
Document Type
Dissertation
Degree Type
PhD
College
Eberly College of Arts and Sciences
Department
Chemistry
Committee Chair
John Blake Mertz
Committee Member
Brian Popp
Committee Member
Justin Legleiter
Committee Member
Jonathan Boyd
Committee Member
Valery Khramtsov
Abstract
Cancer is the second leading cause of death in the US with over 1.7 million new cases each year. Current cancer treatments tend to also target healthy tissues due to similarities with cancerous ones, resulting in acute side effects. Early detection is the best approach towards defeating cancer, however, modern imaging techniques require sizeable samples, often implying a late stage in the disease. One common attribute of tumors is their acidic microenvironment, which can be taken advantage of.
The pH Low Insertion Peptide (pHLIP) is a membrane-active peptide that can take advantage of the acidic microenvironment surrounding cancer cells. pHLIP can spontaneously fold and insert unidirectionally as a transmembrane into lipid membranes under acidic conditions. Thus, pHLIP is able to transport drugs across cancerous membranes and deliver it to the interior of the cell. Although the mechanism of insertion and exit of the peptide has been thoroughly studied through experimental and computational approaches, there are still elements of the peptide and its behavior that are not fully understood.
This dissertation focuses on all-atoms molecular dynamics (MD) simulations to study the interactions between pHLIP and its environmental factors. Through High Performance Computing (HPC) at West Virginia University (WVU), we were able to map the initial stages of exit of pHLIP, determine the effect of peptide insertion on the dynamics of a complex lipid bilayer and provide new insights into the environmental factors affecting pHLIP in solution. The results reported in this dissertation will aid the future development of pHLIP-based early detection and targeting agents.
Recommended Citation
Burns Casamayor, Violetta, "Understanding the relationship between local environmental changes and the function of the pH Low Insertion Peptide" (2021). Graduate Theses, Dissertations, and Problem Reports. 10156.
https://researchrepository.wvu.edu/etd/10156
Embargo Reason
Publication Pending
Included in
Biochemistry Commons, Biophysics Commons, Molecular Biology Commons, Physical Chemistry Commons