Semester

Fall

Date of Graduation

2021

Document Type

Thesis

Degree Type

MS

College

Statler College of Engineering and Mineral Resources

Department

Mechanical and Aerospace Engineering

Committee Chair

Andrew Nix

Committee Co-Chair

Mario Perhinschi

Committee Member

Mario Perhinschi

Committee Member

Scott Wayne

Abstract

As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Electric vehicles have been introduced by the industry, showing promising signs of reducing emissions production in the automotive sector. However, many consumers may be hesitant to purchase fully electric vehicles due to several uncertainty variables including available charging stations. Hybrid electric vehicles (HEVs) have been introduced to reduce problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% regardless of starting SOC. Recommendations for modification of the fuzzy logic controller are made to produce additional fuel economy and charge sustaining benefits from the parallel hybrid vehicle model.

Share

COinS