Semester

Spring

Date of Graduation

2022

Document Type

Thesis

Degree Type

MS

College

Statler College of Engineering and Mineral Resources

Department

Lane Department of Computer Science and Electrical Engineering

Committee Chair

Xin Li

Committee Co-Chair

Bin Liu

Committee Member

Bin Liu

Committee Member

Natalia Schmid

Abstract

Fashion is important both financially and for self-expression. There are many tasks in the fashion domain which can be addressed with artificial intelligence. The task of fashion compatibility prediction is to determine how well a set of items work together to form an outfit. Two main tasks are typically used to evaluate the performance of a fashion compatibility prediction model – Outfit Compatibility Prediction and Fill in the Blank.

In this work, a compatibility prediction model, which is based on the graph autoencoder, is evaluated. This same model is then used in a homogeneous ensemble learning approach, proposed to improve the compatibility prediction performance. This ensemble learning approach does not outperform the baseline. Finally, several potential approaches are introduced which may be of interest to future researchers.

Included in

Data Science Commons

Share

COinS