Semester
Fall
Date of Graduation
2012
Document Type
Thesis
Degree Type
MS
College
Davis College of Agriculture, Natural Resources and Design
Department
Horticulture
Committee Chair
Jeffery G. Skousen
Committee Co-Chair
Thomas C. Griggs
Committee Member
Alan J. Sexstone
Abstract
The high cost and environmental risks associated with non-renewable energy sources has caused an increased interest in, and development of renewable biofuels. Switchgrass (Panicum virgatum L.), a warm season perennial grass, has been investigated as a source of biofuel feedstock due to its high biomass production on marginal soils, its tolerance of harsh growing conditions, and its ability to provide habitat for wildlife and soil conservation cover. West Virginia contains vast expanses of reclaimed surface mine lands and could potentially benefit from the production of switchgrass as a biofuel feedstock. Furthermore, switchgrass production could satisfy Surface Mining Reclamation and Control Act of 1977 (SMCRA) requirements for reclamation bond release to mine operators. Three separate studies will be discussed in this thesis to determine if switchgrass grown on reclaimed surface mines can produce yields similar to yields from stands grown under normal agronomic conditions and what common surface mining reclamation practices may be most appropriate for growing switchgrass. The first study examined yield production of three commercially-available, upland switchgrass varieties grown on two reclaimed surface mines in production years two, three and four. The Hampshire Hill mine site, which was reclaimed in the late 1990s using top soil and treated municipal sludge, averaged 5,800 kg (ha-yr)-1 of switchgrass compared to 803 kg (ha-yr)-1 at the Hobet 21 site which was reclaimed with crushed, unweathered rock over compacted overburden. Site and variety interacted with Cave-in-Rock as the top performer at the more fertile Hampshire Hill site and Shawnee produced the highest yields at Hobet 21 (7,853 kg ha-1 and 1,086 kg ha-1 averaged across years, respectively). Switchgrass yields increased from 2009 to 2010, but declined from 2010 to 2011. Switchgrass yields from farmlands in this region averaged about 15000 kg (ha-yr)-1 in the research literature, so switchgrass grown on reclaimed lands appears to be about 50% lower. A second study to determine optimal nitrogen and mulch rates for switchgrass establishment began in June 2011 on two newly-reclaimed surface mines. Both sites were seeded at a rate of 11.2 kg pure live seed (PLS) ha-1 of Cave-in-Rock on replicated treatments of 0, 33.6 and 67.0 kg N ha-1, and high and low mulch rates of mulch applied as hydromulch. Switchgrass cover, frequency and yield improved with the addition of any amount of N fertilizer compared to no N application. There was no significant difference in yield associated with high and low levels of N. We also observed that yields were not affected by application of additional mulch. The final study compared a one- and two-harvest system in the fourth year of production at the Hampshire Hill and Hobet 21 sites. There was no increase in yield production utilizing a two-harvest system (2922 kg (ha-yr)-1, averaged across site) compared to a one-harvest system (3029 kg (ha-yr)-1). The data also showed that re-growth collected from July to October in the two-harvest system added negligible yield and that yield collected in July was comparable in one- and two-harvest systems.
Recommended Citation
Marra, Michael A., "Switchgrass potential on reclaimed surface mines for biofuel production in West Virginia" (2012). Graduate Theses, Dissertations, and Problem Reports. 114.
https://researchrepository.wvu.edu/etd/114