Semester
Spring
Date of Graduation
2023
Document Type
Thesis
Degree Type
MS
College
Statler College of Engineering and Mineral Resources
Department
Civil and Environmental Engineering
Committee Chair
P.V. Vijay
Committee Co-Chair
Hota V.S. GangaRao
Committee Member
Chao Zhang
Abstract
Advanced fiber-reinforced polymer (FRP) composites are being used as mainstream structural materials to build complex infrastructure systems. Such application of FRP composites can be attributed to their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance, higher energy absorption, durability, and competitive life-cycle costs. FRP composites are increasingly being considered as suitable alternative structural materials to traditional construction materials such as timber, concrete, and steel.
In this work, detailed experimental investigation has been carried out on different types of glass FRP composite pedestrian bridges with FRP and/or timber deck. Four full-scale FRP pedestrian bridges, including 70`×8.5’ and 70’×10’ single-span bridges, a 16’×8’ double-span bridge and a 26’×8’ single-span bridge were evaluated. Testing was conducted at coupon, component, and system-levels. Coupons and individual component characterization was conducted to determine the stresses, strains, failures, and associated factors of safety. Strains and deflection were measured on various members of the bridges at different locations under the application of loads equivalent to H5 vehicle, 100 psf Uniform Dead Load (UDL), lateral wind load, and equestrian loads. Dynamic excitation tests were conducted on the 70’ long single span bridges to establish their natural frequencies in the lateral and longitudinal direction and compared with AASHTO Guide Specifications FRP Pedestrian Bridge standards. The structural response and modifications related to the design and performance of the pedestrian FRP bridge are discussed in this work.
Recommended Citation
Virga, Joseph Ryan, "FRP Pedestrian Bridges" (2023). Graduate Theses, Dissertations, and Problem Reports. 11694.
https://researchrepository.wvu.edu/etd/11694
Embargo Reason
Publication Pending