Semester

Fall

Date of Graduation

2023

Document Type

Dissertation

Degree Type

PhD

College

Davis College of Agriculture, Natural Resources and Design

Department

Division of Animal and Nutritional Sciences

Committee Chair

Robert L. Taylor Jr.

Committee Co-Chair

Yvonne Drechsler

Committee Member

Christopher Ashwell

Committee Member

Stacy Gartin

Committee Member

Rami Dalloul

Abstract

This dissertation explores the identity and role of immunoglobulin-like (Ig-like) receptors in chickens, with focus on their implications in disease and disease progression. These receptors, wisely expressed across immune cells, interact with the major histocompatibility complex (MHC) class I molecules to modulate immune responses in mammals. Due to the insufficient representation of chicken Ig-like receptors in online databases, this study systematically annotates the chicken Cluster Homolog of Immunoglobulin-like Receptors (CHIR) genes using advanced bioinformatic techniques, aligning with the release of the 7th edition of the chicken genome assembly that comprises builds for a broiler and layer chicken. The analysis identifies over 150 CHIR genes, refining functional classifications of activatory (CHIRA), inhibitory (CHIRB), bifunctional (CHIRAB), and CHIR-like (CHIRL) genes through InterProScan, phylogeny and motif searches. Variations in CHIR gene counts across different chicken lines (broiler, N = 124, layer, N = 70) suggest links to selective breeding demands, emphasizing their importance in poultry health and production. Phylogenetically, CHIRs show close relationships with other poultry Ig-like receptors, and structural comparisons indicate analogous roles to Ig-like receptors in the human and rat. As an outcome of the analysis, CHIR genes were renamed with the Chicken Genome Nomenclature Consortium from “chicken homolog of Ig-like receptors” to “cluster homolog of Ig-like receptors”. Reanalyzing next-generation sequencing data reveals CHIR genes are expressed across all tissues of a UCD001 line, with generally higher expression in blood-containing organs. Examination of CHIR gene single nucleotide polymorphisms across various in inbred lines (UCD001, UCD003, Line 0, Line 6, Line 7, Line 15, Line N, Line P, Line C, and Line W) indicates an overall variant rarity and slightly more occurrence in CHIRB genes. Over 1,000 protein-encoding variants are associated with differential resistance and susceptibility to Marek’s disease (P < 0.05). Two in vitro approaches assessed the roles of CHIR molecules in modulating immune responses or targeting pathogens. Re-examination of RNA-sequencing data of MHC-I types B2 and B19 macrophages, temporally stimulated with interferon-gamma, revealed dynamic and opposite CHIR expression trends, with B2s showing an increase and B19s displaying a decrease until returning to basal levels at 24 to 48 hours. These findings suggest nuanced and distinct regulatory patterns of CHIRs in different haplotypes during immune responses. Additionally, CHIR sequences were aligned for the design of small interfering RNA molecules targeting the CHIRB functional group on macrophages retrieved from birds of congenic (UCD331 and UCD335) and mixed (WVU1952) backgrounds. CHIRB silencing was observed to enhance cellular nitrate release and impact H2O2, particularly in specific MHC-I haplotypes and in different genetic backbones, in avian influenza virus infection. While this dissertation enhances our understanding of chicken Ig-like receptors and cellular involvement, it also acknowledges certain limitations, such as variations in gene annotations. Nevertheless, CHIRs merit a sizeable acknowledgment as pivotal contributors to the immune response, particularly in their intricate interactions with the MHC. Future studies integrating this understanding into breeding plans or other interventions becomes a strategic imperative for optimizing poultry health and immunity, ensuring wellbeing, and in turn, a more resilient and sustainable food supply.

Share

COinS