Semester
Spring
Date of Graduation
2002
Document Type
Thesis
Degree Type
MS
College
Statler College of Engineering and Mineral Resources
Department
Lane Department of Computer Science and Electrical Engineering
Committee Chair
Powsiri Klinkhachorn.
Abstract
The focus of this thesis is the design and implementation of a personal static var compensator (PSVC) for distributed var control through load power factor correction. The PSVC demonstrates the two key benefits of power factor correction, which include decreased power costs and increased system capacity. The PSVC prototype consists of two types of branches---a TSC branch and a TCR branch. A microprocessor is responsible for calculating the load displacement power factor (PFD) and for executing the fuzzy logic control scheme for the two branches. The PSVC was found to reduce the RMS current drawn by a 55-watt AC motor by 25% while raising its PFD by 40% to 0.99 lagging. The expected quick rate of return of installation costs is attributed to the PSVC's low initial cost and its ability to reduce tariffs for reactive power consumption.
Recommended Citation
Zemerick, Scott Alan, "Design of a prototype personal static var compensator" (2002). Graduate Theses, Dissertations, and Problem Reports. 1247.
https://researchrepository.wvu.edu/etd/1247