Semester

Summer

Date of Graduation

2005

Document Type

Thesis

Degree Type

MS

College

Statler College of Engineering and Mineral Resources

Department

Petroleum and Natural Gas Engineering

Committee Chair

Shahab Mohaghegh.

Abstract

Integrating different types of data having different scales is the major challenge in reservoir characterization studies. Seismic data is among those different types of data, which is usually used by geoscientists for structural mapping of the subsurface and making interpretations of the reservoir's facies distribution. Yet, it has been a common aim of geoscientists to incorporate seismic data in high-resolution reservoir description through a process called seismic inversion.;In this study, an intelligent seismic inversion methodology is presented to achieve a desirable correlation between relatively low-frequency seismic signals, and the much higher frequency wireline-log data. Vertical seismic profile (VSP) is used as an intermediate step between the well logs and the surface seismic. Generalized regression neural network (GRNN) is used to build two correlation models between; (1) Surface seismic and VSP, (2) VSP and well logs both using synthetic seismic data, and real data taken from the Buffalo Valley Field.

Share

COinS