Semester
Summer
Date of Graduation
2006
Document Type
Thesis
Degree Type
MS
College
Statler College of Engineering and Mineral Resources
Department
Mechanical and Aerospace Engineering
Committee Chair
Marcello R. Napolitano.
Abstract
This research focuses on the application of Machine Vision (MV) techniques and algorithms to the problems of Autonomous Aerial Refueling (AAR) and Runway Detection. In particular, real laboratory based hardware was used in a simulated environment to emulate real-life conditions for AAR. It was shown that the K-Means Clustering Algorithm solution to the Marker Detection problem could be executed at a frame rate of 30 Hz and it averaged a tracking error of less than one pixel while utilizing only 0.16% of the image. It was also shown that the solution to the Runway Detection problem could be executed at a frame rate of 20 Hz which is acceptable for use in an UAV performing reconnaissance work. Data from these tests suggest that both software schemes are suitable for applications in moving vehicles and that the accuracy of the measurements produced by the schemes make them suitable for UAV applications.
Recommended Citation
Rowe, Larry W. II, "Machine vision applications in UAVs for autonomous aerial refueling and runway detection" (2006). Graduate Theses, Dissertations, and Problem Reports. 1742.
https://researchrepository.wvu.edu/etd/1742