Semester
Fall
Date of Graduation
2006
Document Type
Thesis
Degree Type
MS
College
Statler College of Engineering and Mineral Resources
Department
Lane Department of Computer Science and Electrical Engineering
Committee Chair
Natalia A. Schmid.
Abstract
Performance of biometrics-based recognition systems depends on various factors: database quality, image preprocessing, encoding techniques, etc. Given a biometric database and a selected encoding method, the capability of a recognition system is limited by the relationship between the number of classes that the recognition system can encode and the length of encoded data describing the template at a specific level of distortion. In this work, we evaluate constrained recognition capacity of biometric systems under the constraint of two global encoding techniques: Principal Component Analysis and Independent Component Analysis. The developed methodology is applied to predict capacity of different recognition channels formed during acquisition of different iris and face databases. The proposed approach relies on data modeling and involves classical detection and information theories. The major contribution is in providing a guideline on how to evaluate capabilities of large-scale biometric recognition systems in practice. Recognition capacity can also be promoted as a global quality measure of biometric databases.
Recommended Citation
Nicolo, Francesco P., "Recognition capacity of biometric-based systems" (2006). Graduate Theses, Dissertations, and Problem Reports. 1780.
https://researchrepository.wvu.edu/etd/1780