Semester
Spring
Date of Graduation
2008
Document Type
Thesis
Degree Type
MS
College
Statler College of Engineering and Mineral Resources
Department
Lane Department of Computer Science and Electrical Engineering
Committee Chair
Daryl Reynolds.
Abstract
Wireless communications over long distances can be assisted by a third radio acting as a relay. If the relay is placed close to the source, then the source-relay link will be characterized as a fairly benign additive white Gaussian noise (AWGN) channel. However, the long distance link from relay to destination is susceptible to frequency-selective fading. This thesis explores the design and analysis of a particular relay communication system characterized by a low power source, a relay that is close to the source, and a frequency-selective channel from relay to destination. Because the direct link from source to destination is very weak, it is not exploited, but rather communications is via a traditional two-hop process.;Link design is based on the high speed download packet access (HSDPA) standard, which uses a combination of turbo coding, hybrid-ARQ, and multicode CDMA. To provide further diversity, the relay-destination link uses a secondary spreading code, rake reception, and multiple receive antennas. An extensive analysis was conducted to study the influence of a wide variety of link configurations and channel conditions. The study was accelerated through the use of a quasi-analytical approach based on the concept of information-outage, which allows the link to be simulated without requiring a turbo decoder.
Recommended Citation
Mazzie, John Paul, "Relay communications over frequency-selective fading channels" (2008). Graduate Theses, Dissertations, and Problem Reports. 1936.
https://researchrepository.wvu.edu/etd/1936