Semester
Summer
Date of Graduation
2014
Document Type
Thesis
Degree Type
MS
College
Statler College of Engineering and Mineral Resources
Department
Lane Department of Computer Science and Electrical Engineering
Committee Chair
Roy S. Nutter, jr
Committee Co-Chair
Matthew C. Valenti
Committee Member
David W. Graham.
Abstract
The earth does not easily propagate high frequency signals. Low frequency, through the earth, signals would provide better penetration of the earth surface. Extremely low frequency communications has been a challenge for many years because of the underlying limitations such as significant background noise, and large antenna size. This thesis investigates the design of a compact quadrature sampling detector for extremely low frequency through the earth communication. It is hoped that a receiver such as that designed herein could receive signals at frequencies much much less than 10 kHz through the earth. Furthermore, this thesis compares the method of quadrature reception at these extremely low frequencies using simulation and hardware implementation with higher frequencies. This thesis also discusses the design of quadrature sampling detector and performance measurement of the quadrature detector at these extremely low frequencies. The results of the quadrature detection hardware testing show that it is indeed possible to use a quadrature detector at such low frequencies.
Recommended Citation
Kebede, Zenaneh Ashebir, "Low frequency Quadrature detector design, simulation and implementation for use in underground communication" (2014). Graduate Theses, Dissertations, and Problem Reports. 219.
https://researchrepository.wvu.edu/etd/219