Semester

Summer

Date of Graduation

2005

Document Type

Dissertation

Degree Type

PhD

College

Eberly College of Arts and Sciences

Department

Mathematics

Committee Chair

Hong-Jian Lai.

Abstract

The research of my dissertation is motivated by the conjecture of Thomassen that every 4-connected line graph is hamiltonian and by the conjecture of Tutte that every 4-edge-connected graph has a no-where-zero 3-flow. Towards the hamiltonian line graph problem, we proved that every 3-connected N2-locally connected claw-free graph is hamiltonian, which was conjectured by Ryjacek in 1990; that every 4-connected line graph of an almost claw free graph is hamiltonian connected, and that every triangularly connected claw-free graph G with |E( G)| ≥ 3 is vertex pancyclic. Towards the second conjecture, we proved that every line graph of a 4-edge-connected graph is Z 3-connected.

Share

COinS