Semester
Summer
Date of Graduation
2007
Document Type
Dissertation
Degree Type
PhD
College
Statler College of Engineering and Mineral Resources
Department
Mechanical and Aerospace Engineering
Committee Chair
Wade Huebsch.
Abstract
Inspired by flight in nature, work done by Lippisch, the Hortens, and Northrop offered insight to achieving the efficiency of bird flight with swept-wing tailless aircraft. Tailless designs must incorporate aerodynamic compromises for control, which have inhibited potential advantages. A morphing mechanism, capable of changing the twist of wing and that can also provide pitch, roll and yaw control for a tailless swept wing aircraft is the first step to a series of morphing techniques, which will lead to more fluid, bird-like flight. This research focuses on investigating the design of a morphing wing to improve the flight characteristics of swept wing Horten type tailless aircraft. Free flight demonstrators, wind tunnel flow visualization, wind-tunnel force and moment data along with CFD studies have been used to evaluate the stability, control and efficiency of a morphing swept wing tailless aircraft.;A wing morphing mechanism for the control of a swept wing tailless aircraft has been developed. This new control technique was experimentally and numerically compared to an existing elevon equipped tailless aircraft and has shown the potential for significant improvement in efficiency. The feasibility of this mechanism was also validated through flight testing of a flight weight version.;In the process of comparing the Horten type elevon equipped aircraft and the morphing model, formal wind tunnel verification of wingtip induced thrust, found in Horten (Bell Shaped Lift distribution) type swept wing tailless aircraft was documented. A more complete physical understanding of the highly complex flow generated in the control region of the morphing tailless aircraft has been developed.;CFD models indicate the possibility of the presence of a Leading Edge Vortex (LEV) on the control section morphing wing when the tip is twisted between +3.5 degrees and +7 degrees. The presence of this LEV causes a reduction of drag while lift is increased. Similar LEVs have been documented in use by birds and insects.
Recommended Citation
Guiler, Richard W., "Control of a swept wing tailless aircraft through wing morphing" (2007). Graduate Theses, Dissertations, and Problem Reports. 2779.
https://researchrepository.wvu.edu/etd/2779